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Abstract. We discuss the possible choices of conjugation and permutation matrices for 
mixed symmetry triads. This requires a short review of the previous choices for all triads. 
The primitive 6-j of the finite group K,, are then calculated as an example of a group that 
contains mixed symmetry triads. 

1. Introduction 

Although numerous 6-j  have been calculated for various groups, relatively few workers 
have attempted to calculate 6-j  with multiplicity and very few (see Zhang and Xiangzhu 
1987, Gao and Chen 1985) have attempted to calculate 6-j involving mixed symmetry 
couplings. Since mixed symmetry triads are a common occurrence in most Lie groups 
(exceptions are SOz, SO3 and SU3) and in the symmetric groups S,, for n 2 6, these 
cases must eventually be analysed. 

In our development of a PASCAL program to perform the calculation of 6-j for a 
general compact group, it was necessary to design it to handle mixed symmetry triads. 
The program only has the selection rules for the group as information and also assumes 
a particular choice of permutation and conjugation matrices for the various triads. 
Therefore we need to study the available choices for these matrices, how the various 
choices are interrelated and which choice is the most convenient form from the 
viewpoint of both group theory and programming. 

We study the various phase choices and decide on an appropriate choice for mixed 
symmetry triads and then check our results by calculating primitive 6-j  for a small 
finite group with mixed symmetry triads. Bickerstaff suggested that we try the K- 
metacyclic group of order 20 (K20) as a test for our ideas since it was a group he had 
attempted but not completed due to the effort required to solve the large number of 
6-j containing mixed symmetry. All but one of the irreps in KZ0 are one dimensional, 
but the non-trivial irrep has a mixed symmetry triad. The rather special nature of Kzo 
also gives us an opportunity to produce an example of the calculation of core 6 4  as 
discussed in a previous paper (Searle and Butler 1988). 

In Q 2 we look at the general case and review what is known about the various 
matrices and the choices that have previously been used. We discuss the possible 
choices for the symmetry relations of mixed symmetry triads and consider their various 
merits in 0 3. Finally in 0 4 we introduce the group Kzo and present our results for its 
primitive 6-j. These are the first 6-j we have found that are strictly complex, although 
such cases are not unknown for the 3-jm symbols (such as T to D2; see Butler (1981)). 
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2. Review 

Derome and Sharp (1965) introduced unitary A, M and U matrices to describe the 
symmetries of a generalised 3-jm or 6-j  symbol for any compact group. We will review 
these and other results for the choice of these matrices (see Butler 1975, Bickerstaff 
1981) in this section. These transformation matrices are defined with respect to their 
effect on the group triad of a 3-jm (and hence four are required for a 6- j  since it can 
be written as a product of four 3-jm). 

We describe the U matrix first. This matrix relates 3-jm symbols with alternative 
coupling multiplicity choices via a unitary transformation 

The U matrix therefore describes the freedom of choice we have in the value of the 
3-jm or 6-j due to the coupling process (see Searle and Butler 1988), as distinct from 
the freedom in 3-jm symbols due to the freedom in branching multiplicity. The freedom 
described by the U matrix can be used to study the possible choices for the two 
matrices, A and M. 

The M matrix gives the property of a 3 -jm under a column permutation (a reordering 
of the coupling) in the following manner: 

where T is the permutation performed on the indices (namely ( a b c )  = ~ ( 1 2 3 ) ) .  The 
elements of M are known as 3-j  phases. Alternative choices of the permutation matrices 
are related via the U matrix as follows: 

M'(T, A l A 2 A 3 )  = U(haAbh,)'M(T, A 1 A 2 A 3 ) U ( A L A 2 A 3 ) .  (2.3) 

Derome (1966) has discussed the choices for the M matrix allowed by (2.3) and 
has found the simplest values of M that could be used. Whenever all three irreps of 
the triad A , A 2 A 3  are not identical, M can be chosen as a diagonal matrix with diagonal 
entries of *1 by choosing U(A,AbAc)  in relation to U(AlA2A3). In the case that 
A I  = A 2  = A 3  the M matrix can be chosen block diagonal with respect to symmetry type. 
However, three symmetry types may occur: these are the symmetric, mixed and 
antisymmetric types whose occurrence is related, respectively, to the occurrence of the 
scalar in the symmetric, mixed and antisymmetric parts of the cube of A l .  For the 
symmetric and antisymmetric parts of the cube of A I  (A1@{3} and A1@{13}, respec- 
tively) the blocks may be chosen as Z13] or -IL1']. The dimension of the unit matrix is 
the same as the multiplicity of the scalar in the appropriate part of the cube. An 
occurrence of the scalar in A @{21} means we have an occurrence of a so-called mixed 
symmetry triad, where the column permutation symmetry must be represented by 
two-dimensional matrices of the irrep [21] of S3. Our M matrix for A I  = A 2 = A 3  ( = A )  
is then of the form 

M(7r,AAA)=(z[31 M[211 1 
- 1 [ 1 3 1  
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where the MIZll block is itself composed of the two-dimensional S3 irrep matrix (for 
the permutation 7 )  as blocks on its diagonal. Mrzll has dimension of twice the 
multiplicity of the scalar in A O(21). 

The final unitary matrix to consider is the conjugation or A matrix, where 

It has been usual to choose the A matrix equal to I for all couplings, although sometimes 
this choice does not give real coupling symbols (Sullivan 1983). The various forms of 
the A matrix are related to the other matrices via 

and 

We shall discuss further the choices of A for mixed symmetry triads in the next section. 

3. Choices of the S3 irrep matrices 

The usual matrix form for the two-dimensional representation of S3 consists of real 
orthogonal matrices with the generator matrices (12) = ( I  -'), (123) = (-I.3 !:). As a 
result, for a mixed symmetry triad pair A A A  1 and AAA2, the 3-jm with permuted columns 
is a linear combination of 3-jm with unpermuted columns. In particular we have 

(3.1) 

An alternative representation of this irrep has the second of these generators (the 
3-cycle) diagonalised, giving (12) = ( I I ) and (123) = @) with w = exp(27i/3). Use 
of this matrix irrep would imply the use of complex 3-jm symbols, but the 3-jm with 
permuted columns is simply related to an unpermuted symbol, e.g. 

A A A '  A A A 2  A A A '  
( i  j k )  = ( j  i k) = w 2 ( j  k i )  

We wish to know whether there is any restriction on the use of either of these two 
choices and what effect they have on the choice of the A matrix. 

At this stage we impose the requirement that the product of two orthogonal or two 
symplectic irreps contains only orthogonal irreps. This is a restriction that is satisfied 
by all triads of all the classical Lie groups, point groups, symmetric groups and many 
finite groups. With this restriction it has been shown (Butler 1975) that the A matrix 
is a symmetric unitary matrix which is block diagonal on symmetry type. We would 
like to be able to choose the A matrix to be the identity, as this is consistent with most 
previous workers' choices. 

For the choices of the M matrix in § 2 it is known that we may choose A = I .  If 
the real choice of the M matrix for a mixed symmetry triad is used then (2.6) shows 
that the A matrix must be a multiple of I. However, when we apply the generators of 
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the complex choice of the M matrix to A we find 

which requires that the diagonal elements of A are zero. The other generator then 
fixes A as a multiple of I ) .  This skew-diagonal matrix relates one conjugated symbol 
to the symbol for the other multiplicity of the pair, e.g. 

We will choose A = 1 and will choose the real set of permutation matrices. This will 
prevent the permuted forms of a symbol being complex if the symbol can be chosen 
real and allows the A matrix to be omitted in most applications of the Racah-Wigner 
algebra. 

4. Primitive 6-j for KZ0 

To test the calculation of mixed symmetry triads using the above results we looked 
for a small finite group that contained such a triad. The K metacyclic group of order 
20 (see Biedenharn et a1 1968, Bovier et a1 1981) is the smallest such group. It has 
only one irrep that is not one dimensional and all irreps are quasi-orthogonal, All the 
primitive 6-j that occur are core (as defined by Searle and Butler 1988) and the irrep 
with the mixed symmetry triad is also the primitive irrep (see tables 1 and 2) where 
the triads 4441 and 4442 form the only mixed symmetry pair. 

The one basis 6-j that does not contain 444r is {: : :} and is trivially solved by 
using the normality relation. Those few non-basis 6- j  that do not contain any of the 
triads 444r (see table 2) can then be readily solved by the Racah backcoupling equation. 

Table 1. Character table. 

Class 

Irrep E T S TZ T3 

0 1 1 1 1 1 
1 1 - 1  1 1 - 1  

1 I 1 - 1  - 1  

3 1 - 1  1 -1  I 

2 

4 4 0 - 1  0 0 

Table 2. Table of 3-j. 

o o o o +  4 4 0 0 +  4 4 4 0 +  
4 4 4  1+ 4 4 4 2 -  1 l o o +  
1 4 4 0 +  2 4 4 0 -  2 2 1 0 +  

3 2 0 0 +  
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Solving for the large number of remaining 6-j is more complicated since the column 
permutation of any 6-j is related to a linear combination of some others (even when 
a permutation does not seem to alter the irreps, it will still permute the multiplicity 
indices). 

For example, a (23) interchange of {: : ~ } o o l l  is {: ~ } o l o l  which, by the symmetry 
relations, is equal to 

since M (23, 444)0a = 60,. 
By making use of the results of Newmarch (1983) to find out which 6- j  should be 

considered independent, of which there were 14, we were able to solve the independent 
set. We chose 

{4 4 41 {4 4 41 {4 4 41 {4 4 4} 
4 4 4 0000 4 4 4 0011 4 4 4 0012 4 4 4 0111 

{4 4 4 1  4 4 4 0112 4 4 4 1111 4 4 4 0000 4 4 4 0010 

{4 4 4} { I  4 41 { I  4 4} 

{ l  4 41 4 4 4 0110 4 4 4 0120 4 4 4 0000 4 4 4 0010 

{ l  4 4} {2 4 4} {2 4 41 

as our independent set. By using both the orthogonality and Racah backcoupling 
equations (with normality for the few basis 6 - j )  we were able to obtain sufficient 
independent equations to resolve the remaining 6-j. The Racah backcoupling equations 
gave the necessary extra information because they include information on the symmetry 
of the triads. The simultaneous equations for the independent 6-j were created and 
solved by the algebraic program REDUCE, as were the symmetry relations for the related 
6-j. The results were put into the Biedenharn-Elliott equation as an independent check 
that we had correctly solved the various equations. The set of 6 j  are given in table 
3, in the same format as used for the tables of Butler (1981). 

The 69 for this group, Kzo, are the first set of 6-j to be calculated where the 6-j 
are strictly complex. It is impossible to find a different U matrix that will give pure 
real or imaginary values without producing imaginary values for some of the real 6-j. 
A change of multiplicity separation for the mixed symmetry pair affects 3-jm as in 
(2.1) and will affect 6-j similarly, except that there are four matrices, one for the 
multiplicity of each triad (see equation (4.1) of Searle and Butler (1988)). Any such 
change merely moves the pure real, pure imaginary and strictly complex values around 
table 3. 

5. Conclusion 

This paper has reviewed some of the knowledge about the symmetry matrices for the 
generalised 3 j m  and 6 9  symbols. We have then discussed the possible choices for 
the complex conjugation matrix given various choices of permutation matrix for a 
mixed symmetry triad. These choices have then been used in calculating the primitive 
6- j  of the finite group, Kzo. 
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Table 3. Table of 6-j. 

ooo 
0 0 0 0000+1 

440 
0 0 4 0000+1/2 
4 4 0 0000+1/4 

444 
4 4 0 0000+1/4 
4 4 0 0001 0 
4 4 0 0002 0 
4 4 0 0011+1/4 
4 4 0 0012 0 
4 4 0 0022-1/4 
4 4 4 0000+1/6 
4 4 4 0 0 0 1  0 
4 4 4 0002 0 
4 4 4 0010 0 
4 4 4 0011-1/12 
4 4 4 0012 0 
4 4 4 0020 0 
4 4 4 0021 0 
4 4 4 0022+1/12 
4 4 4 0100 0 
4 4 4 0101+1/24 
4 4 4 0102+1/8J3 
4 4 4 0110+1/24 

4 4 4 0112-1/446 
4 4 4 0120-1/8J3 
4 4 4 0121+1/4J6 

4 4 4 0200 0 
4 4 4 0201+1/8J3 
4 4 4 0202-1/24 
4 4 4 0210-1/843 
4 4 4 0211 0 
4 4 4 0212-1/642 
4 4 4 0220-1/24 
4 4 4 0221-1/642 
4 4 4 0222 0 
4 4 4 1000 0 
4 4 4 1001+1/24 
4 4 4 1002-1/843 
4 4 4 1010+1/24 

4 4 4 1012+1/4J6 
4 4 4 1020+1/8J3 
4 4 4 1021-1/4~’6 

4 4 4 0111+1/12J2 

4 4 4 0122+1/1242 

4 4 4 1011+1/12J2 

4 4 4 1022+1/12\/‘2 
4 4 4 1100-1/12 
4 4 4 1101+1/12J2 
4 4 4 1102 0 
4 4 4 1110+1/12J2 
4 4 4 1111+1/8 
4 4 4 1112 0 
4 4 4 1120 0 
4 4 4 1121 0 

444 (continued) 
4 4 4 1122+1/24 
4 4 4 1200 0 
4 4 4 1201-1/446 
4 4 4 1202-1/64’2 
4 4 4 1210+1/4J6 
4 4 4 1211 0 
4 4 4 1212+1/24 
4 4 4 1220-1/642 
4 4 4 1221+1/24 
4 4 4 1222 0 
4 4 4 2000 0 
4 4 4 2001-1/8J3 
4 4 4 2002-1/24 
4 4 4 2010+1/8J3 
4 4 4 2011 0 
4 4 4 2012-1/642 
4 4 4 2020-1/24 

4 4 4 2022 0 
4 4 4 2100 0 
4 4 4 2101+1/4J6 
4 4 4 2102-1/642 
4 4 4 2110-1/4\/6 
4 4 4 2111 0 
4 4 4 2112+1/24 
4 4 4 2120-1/642 
4 4 4 2121+1/24 
4 4 4 2122 0 

4 4 4 2021-1/&2 

4 4 4 2200+1/12 
4 4 4 2201+1/12J2 
4 4 4 2202 0 
4 4 4 2210+1/12J2 
4 4 4 2211+1/24 
4 4 4 2212 0 
4 4 4 2220 0 
4 4 4 2221 0 
4 4 4 2222+1/8 
1 4 4 0000-1/12 
1 4 4 0001+1/6J2 
1 4 4 0002+1/246 
1 4 4 1000+1/6J2 
1 4 4 1001+5/24 
1 4 4 1002-1/8\/3 
1 4 4 2000+1/2J6 
1 4 4 2001-1/843 
1 4 4 2002+1/8 

4 1 4 0001+1/6J2 
4 1 4 0002-1/2~’6 
4 1 4 0100+1/6J2 
4 1 4 0101+5/24 
4 1 4 0102+1/8\’3 
4 1 4 0200-1/2\/6 
4 1 4 0201+1/8J3 
4 1 4 0202+1/8 

4 4 1 0001-1/3J2 

4 1 4 0000-1/12 

4 4 1 0000-1/12 

~~ 

444 (continued) 
4 4 1 0002 0 
4 4 1 0010-1/3J2 
4 4 1 0011+1/12 
4 4 1 0012 0 
4 4 1 0020 0 
4 4 1 0021 0 
4 4 1 0022+1/4 
2 4 4 0000+1/12 
2 4 4 0001 (1+3i)/12J2 
2 4 4 0002 (1-i)/4J6 
2 4 4 1000(1-3i)/12J2 
2 4 4 1001+1/24 
2 4 4 1002 (1+2i)/8J3 
2 4 4 2000 ( l+ i ) /4J6  
2 4 4 2001 (1-2i)/8~’3 
2 4 4 2002+1/8 

4 2 4 0001 (1-3i)/12~’2 
4 2 4 0002-(lt i) /4J6 
4 2 4 0100(1+3i)/12J2 
4 2 4 0101+1/24 
4 2 4 0102(-1+2i)/8J3 
4 2 4 0200(-l+i)/4J6 
4 2 4 0201-(1+2i)/8d3 
4 2 4 0202+1/8 
4 4 2 0000+1/12 

4 2 4 0000+1/12 

4 4 2 0001-1/6\12 
4 4 2 0002+i/2J6 
4 4 2 0010-1/6J2 
4 4 2 0011+1/6 
4 4 2 0012+i/4J3 
4 4 2 0020-i/246 
4 4 2 0021-i/4\13 
4 4 2 0022 0 

414 
4 4 4 0000-1/12 
4 4 4 0010+1/6J2 
4 4 4 0020-1/246 
4 4 4 1000+1/642 
4 4 4 1010+5/24 
4 4 4 1020+1/8J3 
4 4 4 2000-1/2:6 
4 4 4 2010+1/8J3 
4 4 4 2020+1/8 

424 
4 4 4 0000+1/12 
4 4 4 0010(1+3i)/1242 
4 4 4 0020(-l+i)/4J6 
4 4 4 1000(1-3i)/12J2 
4 4 4 1010+1/24 
4 4 4 1020-(1+2i)/8J3 
4 4 4 2000-(l+i)/4J6 
4 4 4 2010(-1+2i)/843 
4 4 4 2020+1/8 
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Table 3. (continued) 

~ ~~ 

441 
4 4 4 0000-1/12 
4 4 4 OlOO-I/3J2 
4 4 4 0200 0 
4 4 4 1000-1/3\’2 
4 4 4 1100+1/12 
4 4 4 I200 0 
4 4 4 2000 0 
4 4 4 2100 0 
4 4 4 2200+1/4 

442 
4 4 4 0000+1/12 
4 4 4 0100-1/6J2 
4 4 4 0200+i/ZJ6 
4 4 4 1000-1/6J2 
4 4 4 1100+1/6 
4 4 4 1200+i/4J3 
4 4 4 2000-i/2J6 
4 4 4 2100-i/4J3 
4 4 4 2200 0 

144 
0 4 4 0000+1/4 
4 1 0 0000+1/2 
4 4 4 0000-1/12 
4 4 4 0010+1/6J2 
4 4 4 0020+l/2J6 
4 4 4 0100+1/6J2 
4 4 4 0110+5/24 
4 4 4 0120-1/8\/3 
4 4 4 0200+1/2J6 
4 4 4 0210-1/8\/3 
4 4 4 0220+1/8 
1 4 4 0000+1/4 

244 (continued) 
4 4 4 0010(1+3i ) /12~2 
4 4 4 0020(1-1)/4\6 

4 4 4 0110+1/24 
4 4 4 0100(1+31)/12\/2 

4 4 4 0120~1+2i1/RJ3 
4 4 4 0200 (1+1)/4\ 6 
4 4 4 0210(1-21)/8~’3 
4 4 4 0220+l/8 
1 4 4 0000-1/4 
2 4 4 0000+1/4 
3 4 4 0000+1/4 

110 
0 0 1 OOOo+l 
1 1 0 0000+1 

244 
0 4 4 0000-1/4 
4 2 0 0000-1/2 
4 4 4 oooo+1/12 

221 
0 1 2 0000+1 
4 4 4 oooo+1/2 
2 3 1 OOO0+1 
3 2 0 o o o o + 1  

320 
0 0 2 o o o o + 1  
3 3 0 o o o O + 1  
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